skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Madhu, Azad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Harmful algal blooms (HABs) in lakes and estuaries, caused by cyanobacteria, pose various threats to humans and the environment. Cyanobacteria produce microcystins (MCs) that make animals and people sick. Once airborne, cyanobacterial aerosols are rapidly transformed through heterogeneous reactions with atmospheric oxidants, which tend to occur much faster in air than in water. The important aspects of these transformations include the degradation of MCs and the production of reactive oxygen species (ROS) from oxidized organic matter (OM) in cyanobacterial aerosol. In this study, MCs in aerosols and water samples, collected in lakes (Lake Okeechobee, Georges Lake, and Doctors Lake) of Florida during HABs, were measured using enzyme-linked immunosorbent assay kits. Organic hydroperoxides (OHP) and the oxidative potential (OP) associated with aerosols collected at Doctors Lake were measured with 4-nitrophenylboronic acid and dithiothreitol assays, respectively. The decay of MCs and the evolution of ROS in cyanobacterial aerosols were also demonstrated in an outdoor chamber under ambient sunlight. MC concentrations (0.4–2.1 μg/L) during HAB periods were higher than the US EPA guideline (0.3 μg/L for pre-school age and 1.6 μg/L for school-age and above). Airborne MC concentrations ranged from 0.2 to 5.7 ng/m3. Regulations for airborne MC concentrations are yet to be established. In both field and chamber data, MCs decomposed but ROS substantially increased as aerosols atmospherically oxidized. Aerosolized OM concentrations during HABs were higher than those in dormant periods. OM in cyanobacterial aerosols was enriched at estuary Doctors Lake with high inorganic salt concentrations due to salting-out of water-soluble organics into lake-surface layers. Aerosolized OM concentrations were positively corelated to OP and OHP (r = 0.96 and 0.85, respectively) at Doctors Lake suggesting that cyanobacterial aerosols might adversely influence respiratory health. The longitudinal health impacts of aerosolized cyanobacteria emitted from HABs should be investigated in the future. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Abstract Red tide is caused by the accumulation of Karenia (K.) brevis, which produces brevetoxin (BTx), a neurotoxin. Excreted BTx is incorporated into sea spray aerosol (SSA), which is created from the bursting of bubbles at the ocean’s surface. For the first time, this study measures the enrichment factor of BTx in K. brevis algal aerosol. During red-tide events in 2021 and 2022, aerosol and water samples were collected from Gulf Coast beaches in Southwest Florida with various levels of K. brevis growth. The concentrations of BTx in SSA were measured using an enzyme-linked immunosorbent assay kit. The concentrations of both aerosolized BTx and organic matter (OM) were normalized using that of sodium ions and were shown to be significantly higher than those observed in seawater. Lipophilic BTx is present in SSA at concentrations that are 2-4 orders of magnitude higher than seawater, and 1-2 orders of magnitude higher than concentrations of OM in SSA. Enrichment of aerosolized BTx was also simulated in the algal culture tank with two different aerosol generation methods. The estimated activity coefficient (order of 1019) of BTx in bulk seawater using the inorganic thermodynamic model indicates very poor solubility of BTx in seawater and supports its enrichment in ocean surfaces and SSA. Examining the enrichment factors of BTx and organic matter in SSA contributes to our comprehension of the potential respiratory challenges posed by inhaled algal aerosols during red tide occurrences. In addition, enriched BTx in the uppermost layer of the ocean during red tide blooms can adversely influence animals that inhabit in tide flats with neurological and respiratory impacts. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Abstract. Secondary organic aerosol (SOA) from diesel fuel is known to besignificantly sourced from the atmospheric oxidation of aliphatichydrocarbons. In this study, the formation of linear alkane SOA waspredicted using the Unified Partitioning Aerosol Phase Reaction (UNIPAR)model that simulated multiphase reactions of hydrocarbons. In the model, theformation of oxygenated products from the photooxidation of linear alkaneswas simulated using a nearly explicit gas kinetic mechanism. Autoxidationpaths integrated with alkyl peroxy radicals were added to the MasterChemical Mechanism v3.3.1 to improve the prediction of low-volatilityproducts in the gas phase and SOA mass. The resulting gas products were thenlumped into volatility- and reactivity-based groups that are linked to mass-basedstoichiometric coefficients. The SOA mass in the UNIPAR model is producedvia three major pathways: partitioning of gaseous oxidized products ontoboth the organic and wet inorganic phases, oligomerization in the organic phase,and reactions in the wet inorganic phase (acid-catalyzed oligomerization andorganosulfate formation). The model performance was demonstrated for SOAdata that were produced through the photooxidation of a homologous series oflinear alkanes ranging from C9–C15 under varying environments (NOxlevels and inorganic seed conditions) in a large outdoor photochemical smogchamber. The product distributions of linear alkanes were mathematicallypredicted as a function of carbon number using an incremental volatilitycoefficient (IVC) to cover a wide range of alkane lengths. The prediction ofalkane SOA using the incremental volatility-based product distributions,which were obtained with C9–C12 alkanes, was evaluated for C13and C15 chamber data and further extrapolated to predict the SOA from longer-chain alkanes (≥ C15) that can be found in diesel. The model simulationof linear alkanes in diesel fuel suggests that SOA mass is mainly producedby alkanes C15 and higher. Alkane SOA is insignificantly impacted by thereactions of organic species in the wet inorganic phase due to thehydrophobicity of products but significantly influenced by gas–particlepartitioning. 
    more » « less
  4. The UNIfied Partitioning-Aerosol phase Reaction (UNIPAR) model was established on the Comprehensive Air quality Model with extensions (CAMx) to process Secondary Organic Aerosol (SOA) formation by capturing multiphase reactions of hydrocarbons (HCs) in regional scales. SOA growth was simulated using a wide range of anthropogenic HCs including ten aromatics and linear alkanes with different carbon-lengths. The atmospheric processes of biogenic HCs (isoprene, terpenes, and sesquiterpene) were simulated for the major oxidation paths (ozone, OH radicals, and nitrate radicals) to predict day and night SOA formation. The UNIPAR model streamlined the multiphase partitioning of the lumping species originating from semi-explicitly predicted gas products and their heterogeneous chemistry to form non-volatile oligomeric species in both organic aerosol and inorganic aqueous phase. The CAMx-UNIPAR model predicted SOA formation at four ground urban sites (San Jose, Sacramento, Fresno, and Bakersfield) in California, United States during wintertime 2018. Overall, the simulated mass concentrations of the total organic matter, consisting of primary OA (POA) and SOA, showed a good agreement with the observations. The simulated SOA mass in the urban areas of California was predominated by alkane and terpene. During the daytime, low-volatile products originating from the autoxidation of long-chain alkanes considerably contributed to the SOA mass. In contrast, a significant amount of nighttime SOA was produced by the reaction of terpene with ozone or nitrate radicals. The spatial distributions of anthropogenic SOA associated with aromatic and alkane HCs were noticeably affected by the southward wind direction owing to the relatively long lifetime of their atmospheric oxidation, whereas those of biogenic SOA were nearly insensitive to wind direction. During wintertime 2018, the impact of inorganic aerosol hygroscopicity on the total SOA budget was not evident because of the small contribution of aromatic and isoprene products that are hydrophilic and reactive in the inorganic aqueous phase. However, an increased isoprene SOA mass was predicted during the wet periods, although its contribution to the total SOA was little. 
    more » « less
  5. null (Ed.)